Dynamical characterisation of neural networks and
neurophysiological time series: Parallel approaches using

Python

Thomas Greg Corcoran

08 June 2011

t.corcoran@susx.ac.uk
Centre for computational neuroscience and robotics (CCNR),
University of Sussex, Brighton UK

Abstract

This work is an exploration of the use of time-delay embedding to explore the
dynamical properties of neural network simulations and physiological signals.
Whilst parallel approaches such as MPI and CUDA are extremely useful in the
simulation of neural systems, the construction of statistics from such simulations
can be even more computationally challenging.

Reconstructed attractors (via Takens embedding [1]) are naturally im-
mutable data structures, thus making their analysis an excellent candidate for
parallel and/or functional approaches. Moreover, the calculation of statistics of
attractors, such as finite-time Lyapunov exponents (FTLE) and entropies [2],
are typically very time-consuming. Therefore a toolbox of parallel algorithms is
desirable.

This work compares and explores the use of python multiprocessing (chunk-
based parallism) and Thrust/PyCuda [3,4] (fine-grained parallelism via GPGPU)
approaches to the problem.

The outcome of this work is a Python package for the dynamical characteri-
sation of neuro-physiological and simulation timeseries, bridging the dynamical
and statistical properties of neural systems. These indices are useful in the mul-
tiscale characterisation of activity patterns, dimensional reduction of models,
and distinguishing of chaotic from stochastic systems.

References

1. Takens F. Detecting strange attractors in turbulence. Dynamical systems
and turbulence. 1981

2. Castiglione P, Falcioni M, Lesne A, Vulpiani A. Chaos and Coarse Grain-
ing in Statistical Mechanics. Cambridge University Press; 2008.

3. Jared Hoberock and Nathan Bell. Thrust: A Parallel Template Library.
http://www.meganewtons.com/. 2010


http://www.meganewtons.com/

4. Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and Py-
OpenCL: A Scripting-Based Approach to GPU Run-Time Code Gener-
ation. arXiv. 2009



