
Nitime and IPython: tools for time-series analysis
and high-level parallel computing

In this talk we will discuss two different projects, directed at different aspects of data analysis in
neuroscience. We will begin with a description of Nitime, a library for the analysis of data from
neuroscience experiments. Nitime includes tools for the representation, analysis and visualization of
time-series and related quantities. It contains a core of numerical algorithms for time-series analysis both
in the time and spectral domains, a set of container objects to represent time-series, and auxiliary objects
that expose a high level interface to the numerical machinery and make common analysis tasks easy to
express with compact and semantically clear code. The nitime classes can represent time and time-series
on several different orders of magnitude (suitable for data from different experimental modalities), as well
as events and epochs. In addition, the library contains implementations of algorithms for spectral analysis,
event-related analysis and bi-/multi-variate analysis of time-series data. The library contains a high-level,
user-friendly API for the scripting of common analysis tasks. This API emphasizes efficiency, in that
computations are delayed until they are needed and once they are performed they are cached for further
use. Finally, the library contains several visualization functions, based on functionality from Matplotlib and
NetworkX.

The talk will focus on the distinction between uni-variate analysis methods, which apply to the
characteristics of individual time-series, and multi-/bi-variate methods which apply to the interaction and
mutual influence of two or more time-series. In order to demonstrate this distinction, we will present
multi-variate analysis of data from functional Magnetic Resonance Imaging (fMRI) experiments. We will
contrast and compare three methods for the calculation of functional connectivity between voxels in fMRI
experiments: correlation, spectral coherency and multi-variate autoregressive analysis (“Granger
causality”).

The second part of the presentation will focus on IPython’s new API for high-level parallel computing. As
of this year, IPython has a completely new backend to provide easy-to-use distributed and parallel
computing tools, based on the high-performance ZeroMQ networking library. With the rapid rise of
multicore systems and clusters, the flattening of the speed curve for modern microprocessors and the
ever-increasing sizes of datasets in neuroscience, most scientists today will need to parallelize many of
their analyses in everyday work. Yet, classical parallel computing tools tend to be cumbersome to use,
deploy and interact with, as they have been classically tuned for absolute performance at all costs, at the
detriment of usability. IPython, instead, tries to provide a very high-level, easy to understand and use
model for the parallelization of common tasks, retaining enough performance to be useful in production
contexts but with a constant concern for the scientist’s productivity rather than absolute computational
performance. We will present a description of the main concepts involved, the abstraction model offered
by IPython and some simple examples of practical usage.

Nitime can be found at: http://nipy.org/nitime and IPython at: http://ipython.org.

http://nipy.org/nitime
http://ipython.org

