
Title

=====

DANA, Distributed Asynchronous Numerical & Adaptive computing framework

Motivations

===========

Computational neuroscience is a vast domain of research going down from

the very precise modeling of a single spiking neuron, taking into account

ion channels and/or dendrites spatial geometry up to the modeling of very

large assemblies of simplified neurons that are able to give account of

complex cognitive functions. DANA attempts to address this latter

modeling activity by offering a python computing framework for the design

of large assemblies of neurons using numerical and distributed

computations.

Implementation

==============

DANA is a python computing framework based on numpy and scipy libraries

whose primary goals relate to computational neuroscience and artificial

neural networks. However, this framework can be used in several different

areas like physic simulations, cellular automata or image processing. The

computational paradigm supporting the DANA framework is grounded on the

notion of a unit that is a essentially a set of arbitrary values that can

vary along time under the influence of other units and learning. Each

unit can be connected to any other unit (including itself) using a

weighted (possibly adaptive) connection. A group is a structured set of

such homogeneous units.

For example the game of life can be written very simply as follow:

>>> from dana import *

>>> src = Group((100,100),

 '''V = maximum(0,1.0-(N<1.5)-(N>3.5)-(N<2.5)*(1-V)) : int

 N : float''')

>>> C = SparseConnection(src('V'), src('N'),

 np.array([[1., 1., 1.],

 [1., 0., 1.],

 [1., 1., 1.]]))

src has been defined as a group of 100x100 units, each of them having a

single value V whose value is computed according to V equation and where

N designates a connection from Z to Z (using specified kernel in C

definition). To simulate the game of life, one can write:

>>> src.V = rnd.randint(0, 2, src.shape)

>>> run(n=100)

In the example above, the connection has been made static, but it could

have been made adaptive by defining an equation dW/dt for the C

connection.

The DANA framework offers a set of core objects to design and run such

models with the possibilty of specifying model equations

(differentials/regular), connections and connection equations.

Finally, it is to be noted that DANA has been made purposely very similar

to the BRIAN spiking neural networks simulator and attempt to re-use its

syntax as much as possible.

More information at http://dana.loria.fr

